ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD (Department of Computer Science)

WARNING

- 1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
- 2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Distributed Computing (3485)

Level: Bachelor Semester: Spring, 2013

Total Marks: 100

ASSIGNMENT No. 1

Note: All questions carry equal marks.

- Q.1 What are the procedures and techniques that are used for high assurance communication? Elaborate.
- Q.2 Explain the process of even occurring and allocating resources in a distributed environment.
- Q.3 Discuss the major things that are considered to be necessary for reliability in distributed computing.
- Q.4 What are the techniques adopted in distributed environment for failure controlling and resources availability?
- Q.5 Describe the advantages of dynamic group membership and scalability.

ASSIGNMENT No. 2

Total Marks: 100

Note: All questions carry equal marks.

- Q.1 Define virtuosity. Explain the virtually synchronous algorithms and tools use for execution model.
- Q.2 Explain the process wrapping? How simple RPC wrapping occurred?
- Q.3 Describe the advantages of flexible group communication.
- Q.4 Explain the masking of the overhead of protocol layering.
- Q.5 Give detail explanation of security options for **distributed setting**.

3485 Distributed Computing

Recommended Book:

Reliable Distributed Systems: Technologies, Web Services and Applications by

Credit Hours: 4(3+1)

Kenneth P. Birman Course Outline:

Unit# 1 Basic Distributed Computing Technologies

Basic Communication Services

High Assurance Communication

Remote Procedure Calls and Client Server Model

Styles of Client/Server Computing, CORBA

Unit# 2 Distributed Computing Theory

The Computational Model, Leaders Election

Spares Network Covers and their applications,

Ordering Events & Resource Allocation

Tolerating Processor Failure in Synchronous and Asynchronous Systems

Unit# 3 Reliable Distributed Computing

Hardware/ Software Reliability and Trends

Other Sources of Downtime

Complexity, Detecting Failures

Hostile Environments

Unit# 4 Overcoming Failures in a Distributed System

Consistent Distributed Behavior, Static/ Dynamic Membership

Formalizing Distributed Problem Specifications

Time in Distributed Systems

Failure Models and Reliability Goals

The Distributed Commit Problem

Unit# 5 Dynamic Membership

Dynamic Group Membership

Replicated Data with Malicious Failure

The Impossibility of Asynchronous Consensus (FLP)

Extending Our Protocol into the Full GMS, Scalability

Unit# 6 The Virtual Synchrony Execution Model

Virtual Synchrony

Extended Virtual Synchrony

Virtually Synchronous Algorithms and Tools

Consistency in Distributed Systems

Unit#7 Applications of Reliability Techniques

Wrappers and Toolkits

Wrapping a Simple RPC Sever

Reliability Distributed Shared Memory

Unit#8 Software Architecture for Group Communication

Architecture Considerations in Reliable Systems

The Flexibility Group Communication, Protocol Stacks

Use & performance of Horus

Masking the Overhead of Protocol Layering

Unit# 9 Related Technologies

Security Options for Distributed Settings

Clock Synchronization and synchronous Systems

Transactional Systems

Peer-to-Peer Systems and Probabilistic Protocol